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Abstract— Highly effective recommender systems may still face users’ interest drifting. One of the main strategies for 
handling interest-drifting is forgetting mechanism. Current approaches based on forgetting mechanism have some 
drawbacks: (i) Drifting times are not considered to be detected in user interest over time. (ii) They are not adaptive to 
the evolving nature of user’s interest. Until now, there hasn’t been any study to overcome these problems. This paper 
discusses the above drawbacks and presents a novel recommender system, named WmIDForg, using web usage 
mining, web content mining techniques, and forgetting mechanism to address user interest-drift problem. We try to 
detect evolving and time-variant patterns of users' interest individually, and then dynamically use this information to 
predict favorite items of the user better over time. The experimental results on EachMovie dataset demonstrate our 
methodology increases recommendations precision 6.80% and 1.42% in comparison with available approaches with 
and without interest-drifting respectively. 

Keywords- web recommender system; users’ interest drifting; forgettin mechachanism; web usage mining; web content 
mining; time-based hybrid weight.  

 

I. INTRODUCTION  
Web mining is the mining of data related to the 

World Wide Web. It is categorized into three active 
research areas according to what part of web data is 
mined [1]: Web content mining (WCM), which is the 
process of extracting knowledge from the content of 
website, for example, contents of documents and their 
descriptions; Web usage mining (WUM) which 

studies user access information from log files in order 
to extract interesting usage patterns; Web structure 
mining (WSM), which uses links and references 
within web pages to obtain the underlying topology of 
the interconnections between web objects. Today, web 
mining techniques are widely used in web 
recommender systems [2]. 

A web recommender system tries to predict the 
web user interests and preferences, based on data 
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previously collected from them explicitly or implicitly 
[3]. Today, most of web recommender systems are 
based on the combination of web usage mining and 
web content mining. 

 In general, one of the major problems is that the 
user's interest changes over time. The old interest is 
gradually forgotten, and the new one is created. This 
phenomenon is called as interest drift. Interest drift is 
an instance of concept drift, a widely researched 
problem in machine learning [4]. Users may change 
the items which have been rated highly in the past. For 
example, a new mother may be interested in baby toys, 
although she had no interest in these previously. Or 
even in a movie recommender system, users may 
change their preferences in different genres or adopt a 
new viewpoint on an actor or director. In this regard, a 
user may currently like romance movies while he 
might have been interested in action movies some time 
ago. However, if a recommendation system is not 
aware of the changes, its prediction will not be 
appropriate. 

One of the main strategies for handling interest 
drifts is forgetting mechanism [4]. Since the recent 
observations of the user represent the current interest 
of the user better than older ones, this mechanism uses 
a time function to assigns time weights to items so that 
the items visited recently have more contribution to 
the recommendation than items visited more 
previously.  

In the recent years, some researchers have focused 
on addressing user’s interest drifting problem. In [5] a 
hybrid filtering algorithm has been introduced to 
compute the time weights for different items. 
Accordingly, a decreasing weight is assigned to the 
old data. Song et al. developed similarity and 
difference measures for rule matching to detect 
changes of customer behavior [6]. In [7] two new data 
weighting methods: time-based data weight and item 
similarity-based data weight were proposed to cope 
with the changes of user interests. Li et al. used a  
dynamically building decision tree on streaming data, 
to catch up the interest drifting of users in a traditional 
collaborative filtering recommendation [8]. Li and 
Feng developed a computation model to estimate the 
user interest of the accessed pages through analyzing 
users’ browsing behaviors. They employed time 
function to give more importance to the recent 
observations [9]. A personalized service which 
recommends resources to users at massive education 
resources net has been proposed in [10]. Min and Han 
[11] developed a modified collaborative filtering based 
approach which finds the active user’s neighbors 
according to his/her changing pattern. Their approach 
didn’t pay any attention to interest changes of other 
users. In [12], a mechanism named WebProfiler learns 
a hierarchical representation of user interests using 
conceptual clustering, has been proposed. Interests at 
the top levels of the hierarchy can be seen as long-term 
interests, while more specific ones can be seen as 
shorter-term interests. The hierarchy adapts profiles to 
changes in user interests according to the feedback 
received from users. Furthermore, a time-based 
forgetting has been used to give weight to different 
web paged in the hierarchy. 

Available approaches based on interest drifting by 
the use of forgetting mechanism, have two drawbacks: 
(1) Drifting times of user interest have been neglected. 
In order to handle interest drifting problem, they give 
weights to user observations according to their 
appearance over time, even if no change occurred.  

That will be right in only situations that user's 
interest changes every time he/she visits the website or 
buys something new. In fact, we know that not always 
user's interest changes, And the trend of changes in 
user purchase interest is also different. In some periods 
of time, the user's interest may change quickly, And in 
other periods, it may last much longer. For example, in 
a TV show website a user who has tended to watch 
action movies for one year, suddenly changed his 
interest to horror movies. And one month later, he got 
interested in romance movies. In other words, his 
inertest in an item has been stable for a long time, and 
it has quickly changed twice in 2 months. 

If a user has stable interest during time, some items 
in his/her profile are still of his/her current interest. In 
such cases, assigning weights to all observations, 
which is done by previous approaches, causes these 
items to lose their impact on prediction. Hence, it 
results in unsuccessful recommendations. In general, if 
no change in user interest occurred, no time weight 
must be used. (2) The other drawback is that they 
haven't been adaptive to the evolving nature of users’ 
behavior. Navigations of a web user contain gradual 
evolution of his/her information needs. Therefore, 
several observations together may represent a unique 
interest. If an interest have previously changed, its 
impact must decrease on prediction. Furthermore, if 
some observations represent one interest of the user, 
they must be assigned the same weight because they 
have the same contribution to prediction. As interest 
drifting is important in recommender systems, 
considering evolving user interest can increase the 
precision of recommendations. 

In order to overcome the problems above, we 
develop a novel approach based on forgetting 
mechanism to (1) trace the behavioral patterns of web 
users, and then identify evolving and time-variant 
interest of any user with the lapse of time. (2) and 
capture the importance of different interests per user 
and evaluate their impact on recommendation using 
the information on changes. The results of experiments 
confirm that our method is able to improve the 
system’s adaptability to user’s interest drifting and 
recommendations precision. 

Accordingly, our approach attempts to answer the 
following questions: 

1. How to detect a change in the user interests? 

2. How to adapt with the evolving nature of user’ 
interest? 

3. How the algorithm deals with the above in 
addressing user interest drifting problem? 

4. Whether our approach can help improve 
recommender systems? If the answer is “yes”, 
how much improvement can be achieved? 
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cru,k is the derived rating of category k of user u, 
RNk is the number of rated items belong to that 
category. ru,i is the rating of item i of user u. Category 
ratings are found for each category and each user at 
different timeframes. Category ratings might be a 
proper indices to show how much user u is interested 
in category kth.  

Step 4. Correlation Between different interests:

 This step calculates the correlation between 
different interests of each user at different timeframes. 
The calculation is done by using Auto-Similarity 
measure (AS) discussed in [11]. Here, an interest 
change per user is found by Eq. (2). This measure is 
used for detecting the degree of changes. Auto-
Similarity AS(u)T1,T2 is defined as the similarity 
between the category ratings of user u at timeframes 
T1 and T2, as follow: 

 
    
    

    
     




 

 


k
2

u2Tku,T2cr

u2Tku,T2cr 

k
2

u1Tku,T1cr

k  u1Tku,T1cr
T2T1,uAS

r

r

r

r

Eq.2

  ku,T1cr  is user u’s category ratings for category 

k at timeframe T1. Moreover,  u1Tr is the average 
rating of the same user u at the same timeframe T1. 

Step 5. Changes Detection: 

If the value of Eq. (2) is less than a predefined 
threshold , we will find out that a change in the user 
interest has been occurred after time T1.  

In real world, the timeframe size depends on how 
fast the user tend to forget his/her interests. If the user 
preference changes frequently or quickly over time, 
then a short timeframe will be appropriate. In this 
situation, more timeframes will be required in the 
Time-to-Category Rating Matrix to detect all drifts. 
Conversely, if the user preference is about to be stable 
over time, then we increase the size of timeframe. 
Later, we will show that how the timeframe size 
influences the performance of algorithm. 

Algorithm 2 in Fig. 3 describes briefly how to 
detect time-variant interests of users. 

After detecting drifting times of users' interest, we 
assign them weights as explained in the next 
subsection. 
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Figure 3.    Pseudo code of Algorithm 2 for detecting 
drifting times of user’s interest 

C. Hybrid Weight Computation 

In order to capture the real interest of the user to in 
items, we use forgetting mechanism to assign a hybrid 
weight to ratings based on combining user ratings and 
time using Eq. (3) where Wu,j and Ru,j denote new 
weight of item Ij for user u, and rating user u has 
assigned to item  Ij respectively. F(tr) is a time 
function.  

)
r

F(t  
ju,

R  
ju,

W       Eq. 3 

Several reasons validate the idea of using hybrid 
weight computing in this paper:  

 An item with more rating has more 
importance to customers. 

 Customer preferences are time-sensitive. A 
later rating on items is more indicative to 
show the current user interest [14]. In other 
words, not only high ratings indicate the 
importance of an item to a user; Recent 
ratings also should be able to reflect the 
current interests of a user more accurately. If 
ratings of items are all time-stamped, the 
most recently rated items of the user will 
have a larger impact on the prediction of user 
preference than items that was rated more 
previously.  

The preferences of users usually change with time. 
Some preferences change quickly, while others may 
change at a low speed. As mentioned in section I, 
previous studies applied a time function to blindly 
assign a smaller weight to old ratings and larger 
weight to newer ratings of users [5,7,9,10,14]. They 
don’t detect any drift and multiply the function by all 
user observations. In the circumstances that a user 
interest didn't change, it would make the impact of that 
interest decrease on prediction step, which leads to 
unsuitable recommendations. In this paper, we apply 
time function whenever an interest drift occurs. 

User history contains gradual evolution of user 
information needs. Therefore, several observations of 
the user in the website may indicate a unique interest. 
Hence, we give equal weight to the observations of an 
interest. 

Algorithm 2: Detecting drifting times of user’s interest

Input: Time-to-Category Rating  Matrix, Threshold . 
Output: Drifting times of  interest,   
Begin  
         1. 

/* m is the  last timeframe in Time-to-Category 
Rating  Matrix.*/

For  j = m - 1 to 1 :  
2.1. Calculate AS(u)Tj,Tm between  

2.1. Calculate AS(u)Tj,Tm between  
timeframes Tj and Tm using 
Eq. (2).  

2.2. If  |AS(u)Tj, Tm | <      //a drift occurred. 
         2.2.1 Tm – Tj .  

Else  
         2.2.2.   =  tj+1  . 

End.         
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method described in subsection B. We obtain 
   ss

nn11
' w,t ..., , ,w,t  S   as the sequence of the 

weighted interest of u. Now, we suggest more useful 
items to u by matching the sequence S' with the mined 
historical behavior patterns as follows: 

As mentioned earlier, each of the weighted 
association rules are represented as a set of item-
weight pairs. We can retrieve a rule which has the 
most similar left-hand side with S'. If the left-hand side 
of the each rule is represented as a vector

   } w,p...,,  w,p{R m
r

m1
r

1 , then the similarities 
might be computed using Eq. (8) [17]. 
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After retrieving a rule with the maximum value of 
Similarity(R), we recommend to active user items with 
the highest weight in the right-hand side of the rule. 

III. EXPERIMENTAL RESULTS 
To gauge how well our proposed recommender 

system performs, we carried out our experiments on 
the EachMovie dataset1 that have been one of the most 
widely used common datasets in recommender system 
researches. The EachMovie dataset has the rating 
information on 1,628 movies by 72,916 users within 
an 18-month-period since 1996. Users have rated 
various numbers of movies by rating values between 0 
and 1. Each vote is accompanied by a time stamp. We 
have collected the content of each movie from Internet 
Movie Database (IMDB) website 2  using a web 
crawler. These contents are web pages include movie 
title, director, genre, plot summary, cast, award and 
user comment about each movie. We have selected a 
subset of 466,245 ratings included of 1,628 movies 
and 2,880 users such that all of them have rated more 
than 100 movies. We divided the dataset into a 90% 
for the training set and 10% for the test set.  

In clustering step, web pages have been 
preprocessed by HTML tag removal, word extraction, 
stop word removal, stemming, TF-IDF weighting and 
feature selection [18]. In this regard, a table with 1,628 
documents and 4,290 terms has been created. An 
ART2 neural network has been used for finding the 
correct number of clusters K and the initial points [19]. 

Accordingly, K has been found as 96. We used the 
hybrid genetic algorithm and simulated annealing with 

                                                           
1 www.research.compaq.com/SRC/eachmovie 
 (It' s no longer available in that website.)  
2 www.imdb.com 

Kmeans algorithm [20,21] as our clustering algorithm 
to minimize the total within cluster variances 
(TWCV), and run it for several times to get the best 
result. Table II, presents the minimum, mean and 
maximum values of TWCV for different 15 runs. The 
minimum result is finally selected as output. 

We reimplemented the algorithm of weighted 
association rule mining presented in [16]. The values 
of minimum support and confidence were set to 0.6 
and 0.5 respectively. 

The leave-one-out method [22] is conducted for 
our experiments. The quality of recommendation is 
evaluated by Mean Absolute Error (MAE), which is a 
widely used metric. It can be defined as the average 
absolute difference of predictions from the real user 
ratings. In our experiments, we find MAE on the test 
set for each user by Eq. (9). Then, the average over the 
test set of a user is found by Eq. (10) [5]. A smaller 
value means a better performance. 
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A. Parameter Settings 
There are three major parameters in the proposed 

approach: the timeframes size in section I and 
subsection A, the threshold  used to determine the 
correlation of user interests at different timeframes, 
and the decay rate  in Eq. (5). We conducted a series 
of preliminary experiments to estimate the optimal 
performance obtained for each parameter when the 
value of other is constant. 

 Experiment (1): the impact of timeframe size 

In the first experiment, we change the timeframe 
size parameter from 1 to 4 months. The impact of 
using different values is demonstrated in Fig. 4. This 
parameter value depends on how fast users tend to 
change the interest over time. As discussed before, 
when the speed of changes is high, then the size of 
time frame should be selected smaller to be able to 
find all drifts. Conversely, if the changes happen less 
quickly over time, the timeframe size can be selected 
larger. It is found that timeframe size dramatically 
influences the performance of the algorithm. It is 
necessary to assign different values to this parameter 
to achieve the best performance.  

 Experiment (2): the impact of  

We change the value of  to evaluate its influence 
on the performance of the algorithm. Results are 
shown in Fig. 5. As it is seen, MAE values increase 
with . Recall that in Section II, if the similarity of two 
interests is less than , it means a drift has been 
occurred. Obviously, the lower the value of  is, the 
less drifts detected. Conversely, if  increases, more 
interest drifts are detected. It is possible that two 
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 On the other hand, web user observations contain 
gradual evolution of his/her information needs 
and therefore several observations together 
represent a unique interest. These observations 
must have the same contribution in the 
predictions. Despite previous studies, we found 
evolving interests of users' and then assigned 
equal weight to all the items related to one 
interest.  

IV. CONCLUSION AND FUTURE WORK 
In this paper, we developed a novel approach, 

named WmIDForg, based on web usage mining and 
web content mining techniques which individually 
detect evolving and time-variant patterns of user's 
interest. Moreover, it computes real importance degree 
to each interest of the user. The proposed method 
consists of four phases of (1) detecting the sequence of 
different interests per user over time, (2) computing 
the importance value of different items for the user 
using a hybrid weight, (3) mining time-variant pattern 
and (4) finally recommendation.  

We conducted some experiments to evaluate the 
prediction quality on the EachMovie dataset and 
compared them with the approach of [5] and the 
classic approach that doesn't take interest drifting into 
account. The results show the improvement of our 
proposed method in the ability to adapt to user's 
interests drifting and making recommendations.  

As future work, we intend to evaluate WmIDForg 
on other dataset. To our knowledge, no papers has 
focused on both web usage mining and web content 
mining to address interest drifting using forgetting 
mechanism. We would also like to extend our method 
with other web mining techniques such as web 
structure mining. According to the discuss in section 
III and subsection A, timeframe size has considerable 
impact on the performance of proposed method. It can 
be useful to obtain its appropriate value. We plan to 
use a sliding-window method [23], and apply 
heuristics methods on it to adjust properly the 
timeframe size for each user. 

In a shopping market, users’ interest may change 
periodically. As an example, a user may have different 
buying habit in the weekends compared to the other 
days. In such situations, it seems no interest change 
occurs. Considering such periodic changes in detecting 
different user interests over time may increase the 
precision of recommendation system. How to handle 
the periodic changes can be the further research. 
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